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Explicit time and space dependence of ballistic molecular heat pulses

T. Paszkiewicz and M. Pruchnik
Institute of Theoretical Physics, University of Wroctaw, pl. Borna 9, PL-50-204 Wroctaw, Poland
(Received 2 April 1998

A kinetic description of ballistic molecular heat pulses is presented. By solving the Boltzmann equation
containing a source term we study the explicit time and space dependence of these pulses for various types of
sources and detectors. Assuming that in the casHefthe source consists of a pointlike source that radiates
Maxwellian pulses, the agreement with experimental findings is excellent for point or extended particle detec-
tors. In the case ofHe beams one needs to introduce two sources of different temperatures. This may be
attributed to the enormous difference of heat conductivitftdé and superfluidHe films.
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[. INTRODUCTION attains a temperaturg* different from the vapofambien}
temperaturel. In the case of the purely ballistic motion of
The heat pulse experimental technique has been appligulilses we assunie=0 K. In the experiments considered one
for studies of the velocity spectrum of atoms evaporatedneasures the velocity spectrum of this gas.
from a free liquid *He and “He surface by Andres and co- Suppose further that the time of formation of each mo-
workers[1,2]. The authors concluded that this spectrum islecular heat pulse is much shorter than the mean time lag
Maxwell-Boltzmann-like in nature. after which pulses arrive at the detector. The last assumption
In this paper we present the kinetic description of suchconcerning pulses is that, in agreement with Cid@é and
pulses in the ballisti¢collisionless regime. With the help of experimental finding$1,2], they are Maxwellian with tem-
the source term techniqye&], for various types of sources peratureT*, i.e., the distribution of coordinates and veloci-
we obtain the one-particle distribution function, which al- ties of the pulse particles is given by the familiar Maxwell
lows us to derive the formula for the energy density currentdistribution function
This technique we successfully applied to the problem of the
kinetic description of heat phonon pulses and to study the 82 )
phonon focusing phenomend#,5]. Fn(v, T)= V_*( ;) exp(— yv?), @
The expressions obtained for the energy density current
are used to calculate the shapes of signals radiated by diffefynere
ent sources, propagating in gaseoitée and “He of low
density and registered by the bolometers of various geo-

m
metrical forms. v= .
kg T*
IIl. KINETIC DESCRIPTION OF MOLECULAR HEAT Consider a small volumé®r surrounding the point and
PULSES the small volumed®v in the velocity space containing the

Consider a gas of classical particles each of nasgo- ~ POINtV- The_prgduc_if m(v,T*_)_d3rd3u isathe_ average number
mentump=mv, and energy (v) = mv2/2). Their group ve- pf par_t|cles |'nd r with velqcmes frtimdsu (3|.e., this product
locity vy= de/dp is equal to the particle velocity. The state 'S @ dimensionless quantifif (v, T*)d*rd"v]=1). .
of a rarefied gas of particles or quasiparticles is described by Let us recall that the thermal energy of the belap(T™)
the distribution functiorf. For a system of classical particles is equal toN,(3kgT*). Similarly, the total momentum of the
the distribution function depends on the group veloeigy beam Py, also depends onT*, namely, Py(T*)
the space variable, and timet. =2m(2kgT* /mar) 2N, .

The helium introduced to the chamber forms a condensed Assume that the axis of the Cartesian coordinate system
film over all surfaces(see Fig. 1. For a finite source of is perpendicular to the surface of the film and is directed
dimensions 3.% 3.7 mn? and for a helium film thickness of towards the detector. The remaining axes are lying in the
200 A the total number of atoms Ié;~ 10°. In the experi- plane of the source and are arbitrarily oriented. The detector
ments discussed nonequilibrium beams of helium particlesf the pulsega superconducting bolometer sensitive to the
were generated using metallic films heated by pulses of curenergy carried by the particles of the pulsead the source
rent, the power of which is controlled. were mounted opposite each other at a distabceOnly

In agreement with Andrest al. [1], we assume that im- particles with a positive component of the group velocity
mediately after evaporation atoms fill a region of voludie v, may reach the detector.
and there is a strong interaction of these particles resulting in In the case of experiments on the propagation of heat
quick thermalization. Denote the number of particles filling pulses, the distribution function obeys the kinetic Boltzmann
V* by N, (N,<Nj). The gas of these evaporated particlesequation with the collision integral terr@[f] (which ac-
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He CAPILLARY

FILL LINE f d3rJ+wdtJ d3 Z(v;r,)e(v)=En(T*). (6)
v* —o

\

COPPER ROD TO
MIXING CHAMBER

IIl. THE DISTRIBUTION FUNCTION FOR SELECTED
KINDS OF SOURCE TERMS

In the experiments discusséti,2] the linear distancé
between the source and detector planes was comparable to
the linear dimensions of the source and detector. This means
that the geometry of the experiment was intermediate be-
tween a pointlike and an infinite slab. Therefore, we consid-
ered several types of sources.

LT <

A. A point source

GENERATORLELIU&VA;&;DETECTOR For the described experimental conditions for a point
source located at=0 generating very short pulses, the
FIG. 1. Scheme of the helium chamber used in pulsed moleculaggyrce terr‘r{g“p(v;r,t) has the form
beam experiments.

_ , Cp(vir ) =ApV* 0(v ) f (v, T*) 8(t) 8(r), (7)

counts for all scattering processes suffered by the particles of
a beam and the sourcé(v;r,t) term, whereA,, is a constant. One may easily check that[fay,]
=1 the source term has the correct dimension, namely,
[Lp(vir,)d3rdu]=t"%

The constantA, is determined from the conditiof6).
Calculating integrals, we find,=2N;,. Hence the solution
In the ballistic regime one can discard the collision termof the Boltzmann equation with the source tefr reads
C[f]. Of course, this term plays an important role in the
description of processes of thermalization because collisions ~ fp(Vir,t)=2N,V* 8(v ) f (v, T*) 6(t) S(vt—r).  (8)
with thermal vapor particles provide the crossover from the
ballistic to the hydrodynamici.e., collision dominatedre- B. A homogeneous finite source
gime of propagation of molecular heat pulses observed by
Andres and co-workerid,2]. Such a crossover from the bal- ~ ASSume that atoms are evaporated by a homogeneous
listic to the collision dominated regime of motion can be SOUrce in the form of a circle of radiys; located on the
studied for the Lorentz gas mod¢[&8] and for phonon heat Planez=0 with the center gh=0, wherez andp are two of
pulses propagating in elastic isotropic media containing poinghree cylindric coordinates. The third coordinate is the angle

af(v;r,t)

- +VVE(v;r, ) =C[f(v;r,H)]+2(vir,t). (2

mass defectf9]. ¢, . As previously, if we assume that the duration of these
Consider the source term in the form pulses is very short, then
Za(vir, )= 8(r) 8(1). 3) L(Vir ) =Ac8(ps—p) 8(1) 8(2) 0(v ) f (e, T*).  (9)

The solution of the collisionless Boltzmann equati@BE) ﬁgliﬁ:eagggémgg(rgls in Eq(5), we obtain the solution obey-

with such a source term, called the Green'’s function, reads

*

fo(v;r,t)=0(t) S(vt—r). (4)

f(vip,z,t)= O(v,)fm(e, TF)6(1)

2
Here #(x) is the Heaviside step function and(x) Ps
=d@(x)/dx is the Dirac delta distribution. Since y, andz X o(z—vt)0(pstv,t—p), (10
are components of the radius vectgrthe vectorials func-
tion is the product of threé functions of the scalar argument Wherev,,, v,, and ¢, define the velocity vector in the cy-

5(r)=8(x) 8(y) 8(z). Recall thaf 8(r)]=1"3, wherel isthe lindric coordinate system.

length.
The solution of the CBE for an arbitrary source term C. Slab geometry
{(v;r,t) can be obtained with the help of the Green’s func-  For an infinite slab the source term depends only orzthe
tion [3], namely, variable and tim,
+OC . ’ . —_ .
f.g(v;r’t):f dsf'f At 2T ) (VT — 1 t—t). LVt ) =A.0v ) fru(e, TS 8(2); (1D

(5)  hence the corresponding distribution function reads

On this solution we impose the natural conditid®] fo(v;Z,t)=AL0(v,)f (e, T*) O(1) S(v t—2).
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D. Density of energy current Note that for waves propagating in the same regime along
The quantity measured in experiments on molecular heéﬂe z axis Cooket al. have calculated the excess of stress
pulses is the power densitdensity of energy per unit time  6T,4r,t) at a transducefr13] (cf. also[14,15)
falling onto the surface with the normalat the pointr, ) )
~ z r
ﬁTzz(r,t)~t—3exp( —y—). 17

ed(r t)= nj“)(r,t)=fd3v(ﬁv)s(u)fz(v;r,t). (12) t*

Mayer and Sessldrl5] considered the momentum density
In the agreement with Andrest al. [1], in our calculations  for collisionless propagation of sound in gases.
we seth=2. Later we shall omit the index in e({) Consider the energy density and the density of the

For the fixedr the maximum of a pulse arrives at time 7 component of momentum falling onto the surface with the
tmax- We denote the maximal value of the energy density b)pormalz at the pointr of the detector plane. Calculating the

CONG! [eﬁ%g(r)—eg(r,t— max]- Andreset al. [1] measured integral over time we get
the ratio

En(T*)

7TI"

(zr), (18)

e(r)y= 1 dteyr,t)=
e;(r,t) f P

i)

Therefore, with the exception of the discussion of a solution

for a point source, we shall confine ourselves only to this
quantity normalized to unity, which we shall call the signal ThuS we conclude that these quantities obey the Gauss-
of the bolometer. Lambert law valid for isotropic spacd$]. Further on we

confine ourselves to the case of energy pulses.

1O(r )= 13)

“”(r)—f dt plP(r,t)= PulT” )(nr)(zr) (19

E. Current densities for a point source . -
F. Energy current density for a homogeneous finite source

We introduce the length=|r| and the unit direction vec-

tor r as well as two polar angles , ¢, . By introducing also
the polar coordinates in spacev=|v|,8,,¢, and by using
the familiar identity

A=) =L TS0 0,1720(0,~ 059~ 430 1z = 00y 2 (1+y
t2

For a homogeneous finite source the bolometer signal at
the point with cylindrical coordinatesp(¢,,z) depends on

the exponential function
22+u?
exp —vy 2

3 2 0 for O<p=pq
— Npm 32" r ol u=
ep(r,t)= —an —5; 0y s T (zr). (19 p—ps  for p>ps.

Z+U

we get where

The physical dimension oﬂ’ap(r t) is m/t3 ([e@)(r t)d3v] G. Energy current density for an infinite slab

=[e/lI?’t]=m/t3). For an infinite slab we obtain

Similarly, we calculate am component of the momentum 5 5
density current tensdﬂA(r,t) per unit time falling onto the l.(z,t)= 1/2_2 1+ 7,2_2 exp( — 72_2) (20)
surface with the normat at the pointr, t t

IV. COMPARISON WITH EXPERIMENTAL FINDINGS

3
(p) _ A ~ A~ _ 3 A~ ~ i
pP(0= 3 Buflr02= [ Porviaviny
K a,f=1 p p Using the experimental data of Andres al. [1] (their

Figs. 2-5 and the equation of the state of the ideal gas, we
(910G (16) estimated the mean free pdtlof beams of helium particles.
' We used the standard formula for it

2Nym r2 r2
_ 3l _
= —n o(t)y = exp( t2

The momentum density is proportional to the sound pressure |=(V2mnd) ",

p (cf. [11,12). Hence, for molecular pulses generated by a
p0|nt source and propagating in this regime we obtain wheren is the density of helium vapor ardlis the diameter
of particles @=2.2 A). In this way we get_, the lower

) ) bound ofl. For “He |- =15.4 mm, whereas fofHe | _
p~ —e yr =8.19 mm. Since the distance between the source and de-
tector is equal to 2.34 mm we conclude that the scattering of
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FIG. 2. Calculated bolometer signal vs time fiide. The tem- FIG. 3. Calculated bolometer signal vs time ftie. The tem-

perature estimated by Andrex al. [1] is 0.6 K. Dots represent perature estimated by Andrex al. [1] is 2.2 K. Dots represent
experimental results. Typical error bars are shown. experimental results. Typical error bars are shown.

the beam particle by vapor particles cannot influence thdatter films are less homogeneously heated than the former.
form of pulses. So one may study the role of the form ofWe check this observation in Sec. IV B.
sources only. Figures 2-5 are labeled with the kind of helium atoms.
On each of them there are three curves corresponding to the
three above-mentioned configurations for which we obtained
the best agreement with the experimental results. One should
Each pulse is characterized by two times, namely, by theiotice that the curves on Figs. 2-5 corresponds to different
arrival timet,,, fitted temperature¥* .

A. Molecular *He beams

0 for t<t,,
I(t) for t>t,,,

I(t,z=L)= B. Molecular 3He beams

For simplicity we model inhomogeneously heated helium
. . . films in only two ways. The first is a homogeneously heated
and th? time of arrlv_al .of_the maximum of a pulig,. T_he circle with the center ap=2z=0 and a superimposed point
remaining characteristic is the pulse temperatflite which

we treat as a parameter that should be fitted.

The form of pulses depends not only on the type of source
but also on the particular detector. We considered a pointlike -
detector, a finite detector having the form of a circle, and a
detector covering the whole plane.

Generally, for all types of sources and detectors there ex—g
ists a time interval (@,,) for which the amplitude of signals
is negligibly small. Additionally, all values of the arrival
time obtained here are rather close to those observed in ex
perimentd 1]. However, the characteristic timeg, andt .«
and shapes of signal, as well as the fitted temperatures, a
closest to the experimental finding4] for (i) the point
source and point detectdwhich we denotep/p), (ii) the
point source and a circular detector with area of>X3377
mm? (c/p),and(iii ) the point source and a detector covering
whole planez=L («/p). The results obtained are presented :
in Figs. 2-5 and Table I.

The results obtained suggest that the sources used in e
perimentd 1] behave as sets of point-like sources. However,
inspecting Figs. 2—5 one sees that ftde fits are much
better than for®He, which we may attribute to an enor-  FIG. 4. Calculated bolometer signal vs time fiie. The tem-
mously large heat conductivity of superfluftHe films in  perature estimated by Andre al. [1] is 1.1 K. Dots represent
comparison to°He films. Therefore, one can expect that theexperimental results. Typical error bars are shown.
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FIG. 5. Calculated bolometer signal vs time ftde. The tem-
perature estimated by Andrex al. [1] is 2.9 K. Dots represent
experimental results. Typical error bars are shown.

FIG. 6. Calculated bolometer signal vs time for a combined
source of 3He beams that consists ¢f) a heated circle and a
superimposed point sourgthe heating pulse peak power is 0.018
erg9 (open circlesand(ii) two point sources generating two beams
of different temperature@the heating pulse peak power is 1.8 ergs

source(a “boiling spot”) located in the center of this circle.
(triangles.

They both radiate Maxwellian beams of temperaftifeand
T; , respectively. The second kind of inhomogeneous source

consists of two point sources generating two MaxwellianMany fit parameterée.g., coordinates of numerous soujces
beams of temperaturdg® T4 are beyond the accuracy of the experimental data used. Our
1 12 -

We found that for a colde?He film the fit is excellent for 2PProach is semiphenomenological and certainly the con-
he first kind of % = 0.25 K andT™* = 0.6 K (Ei struction of models used should be based on a deeper under-
the _|rst ind ot source W'.t c— andip =9 ( '9. standing of the underlying physical processes. However
6, circles. The second kind of sourdgwo boiling spot$ is 9 : ying pny b : "
better suited for a more heatétHe film. The fit is best for even such a simple approach seems to be quite successful

. . therefore, we expect that our results may shed some light on
* __ * 1
T1=1.58 KandT =3.16 K(Fig. 6, triangles. In bOt.h Cases  the problem of the heat exchange between cooled specimens
we assume that the detector has the form of a circle. and a helium bath.

V. CONCLUSIONS ACKNOWLEDGMENTS

Using the technique of source terms added to the Boltz- . . .
mann equaon e have suded he Shapes of molecuige € 19 Ik o tark Verky Nrmveranur or e
pulses in the collisionless regime of propagation. We hav 9 pL.

shown that, in agreement with Andresal. [1], the assump- n particular, he drew our attention to the role of the enor-
tion that the pulses are Maxwellian is reasonable and its forn'i':_? usly dlarge dlifsfsre?lce n Tﬁat COI‘]dUCtI\;I:IheS fOf su?erflu]id
provides information about the state of films that evaporate ulzeasn hormariie Hims in the process ot the formation 0
beams of particles. Since we only had at our disposal experf2 :

mental results in the form of plots, we considered the sim-
plest models of sources. More complicated models with APPENDIX: PHONON PULSES IN ISOTROPIC ELASTIC
MEDIA

TABLE |. Fitted tempg,ratures .Of pulses found in Andres, For comparison, consider acoustic phonon pulses propa-
Dynes, and Naranayamurti’s experiments and calculated here for

different types of source-detector configurations. gating in isotropic medid9]. For such media the phonon
energye is a linear function of the lengtp of quasimomen-

Pulse temperaturé* (K)

tum p, i.e., it obeys the linear dispersion relation

i . 3 4
Configuration He He sj(p)Zij (1=0,1.2),

Andreset al. 0.60 2.20 1.10 2.90

p/p 0.40 2.05 0.75 2.40 wherep=7k, k=|k| being the length of the wave vectkr
c/p 0.55 2.70 1.00 3.15 of an acoustic phonon of polarizatign(j =0 for longitudi-

oo/ p 0.70 3.40 1.30 4.05 nal, j=1 for fast transverse, ang=2 for slow transverse
circle/circle 0.90 4.50 1.70 5.30 phonong, andc; is the corresponding phase velocity. The
slab geometry 0.75 3.75 1.40 4.45 group velocity of acoustic phonon wave packets moving in

isotropic media is
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v,=Cik, EP(T)1& [cp)® r
v e(r=j5(r=——r 23 (2] o t——]|,

" ; . . 277r2 3j=0 Cj Cj
wherek=k/k is the direction of the phonon wave vector.

Consider a pointlike Planckian source producing shorivherecy is the Debye velocity of considered isotropic me-
pulses of acoustic phonons of temperattife dium

2
'§<k,j;r,t>=Av*fp|(kB%) 6(k;) 8(r) (1), c53=%j20 URe

wheref ,(e/kgT*) =[ expl/ksT*)—1] is the Planck distri- We see that other than in the case of molecular pulses, pho-
bution function and/* is the volume of the source, a heated NON pulses have the form of very narrow maxima traveling

region of a crystal or metallic film. The distribution function With the corresponding group velocities. ,
reads In the case oferfect anisotropiamedia[4] the compli-

cated nonspherical shapes of phonon surfaces of constant
& R R energy result in an increase of the number of observed pulses
—*) 0(k,) o(r—c;kt) 6(t). because one ought to account for contributions of all points
keT of this surface at which the normal, i.e., the group velocity
vector, is parallel to the vectarjoining a point source with

A condition similar to Eq.(6) allows one to relate the con- int detector. In addition h surf mak | m-
stantA to the suitable part of thermal energy of the source? PO etector. In-addition, Such surtaces make puise a

. . . . litudes dependent on the direction of propagatiphonon
injected into the speC|meIE§ﬁ)(T*) [10]. The power densAlty Focusing agd broaden them. Howeve?, lfnlﬁ(e(pr:]‘glecular

e(r,t) falling onto the bolometer surface with the nornmal  pyises, such broadened maxima still move with the corre-
=z can be easily calculated sponding group velocities.

f(k,j;r,t)=AV*f,
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