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Explicit time and space dependence of ballistic molecular heat pulses

T. Paszkiewicz and M. Pruchnik
Institute of Theoretical Physics, University of Wrocław, pl. Borna 9, PL-50-204 Wrocław, Poland

~Received 2 April 1998!

A kinetic description of ballistic molecular heat pulses is presented. By solving the Boltzmann equation
containing a source term we study the explicit time and space dependence of these pulses for various types of
sources and detectors. Assuming that in the case of4He the source consists of a pointlike source that radiates
Maxwellian pulses, the agreement with experimental findings is excellent for point or extended particle detec-
tors. In the case of3He beams one needs to introduce two sources of different temperatures. This may be
attributed to the enormous difference of heat conductivity of3He and superfluid4He films.
@S1063-651X~98!03309-1#

PACS number~s!: 05.20.Dd, 44.90.1c, 51.10.1y, 66.70.1f
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I. INTRODUCTION

The heat pulse experimental technique has been app
for studies of the velocity spectrum of atoms evapora
from a free liquid 3He and 4He surface by Andres and co
workers @1,2#. The authors concluded that this spectrum
Maxwell-Boltzmann-like in nature.

In this paper we present the kinetic description of su
pulses in the ballistic~collisionless! regime. With the help of
the source term technique@3#, for various types of source
we obtain the one-particle distribution function, which a
lows us to derive the formula for the energy density curre
This technique we successfully applied to the problem of
kinetic description of heat phonon pulses and to study
phonon focusing phenomenon@4,5#.

The expressions obtained for the energy density cur
are used to calculate the shapes of signals radiated by d
ent sources, propagating in gaseous3He and 4He of low
density and registered by the bolometers of various g
metrical forms.

II. KINETIC DESCRIPTION OF MOLECULAR HEAT
PULSES

Consider a gas of classical particles each of massm, mo-
mentump5mv, and energy«(v)5mv2/2). Their group ve-
locity vg5]«/]p is equal to the particle velocityv. The state
of a rarefied gas of particles or quasiparticles is described
the distribution functionf . For a system of classical particle
the distribution function depends on the group velocityvg ,
the space variabler , and timet.

The helium introduced to the chamber forms a conden
film over all surfaces~see Fig. 1!. For a finite source of
dimensions 3.733.7 mm2 and for a helium film thickness o
200 Å the total number of atoms isNf;1015. In the experi-
ments discussed nonequilibrium beams of helium partic
were generated using metallic films heated by pulses of
rent, the power of which is controlled.

In agreement with Andreset al. @1#, we assume that im
mediately after evaporation atoms fill a region of volumeV*
and there is a strong interaction of these particles resultin
quick thermalization. Denote the number of particles filli
V* by Nb (Nb<Nf). The gas of these evaporated partic
PRE 581063-651X/98/58~3!/2853~6!/$15.00
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attains a temperatureT* different from the vapor~ambient!
temperatureT. In the case of the purely ballistic motion o
pulses we assumeT50 K. In the experiments considered on
measures the velocity spectrum of this gas.

Suppose further that the time of formation of each m
lecular heat pulse is much shorter than the mean time
after which pulses arrive at the detector. The last assump
concerning pulses is that, in agreement with Cole@6# and
experimental findings@1,2#, they are Maxwellian with tem-
peratureT* , i.e., the distribution of coordinates and veloc
ties of the pulse particles is given by the familiar Maxwe
distribution function

f m~v,T* !5
1

V*
S g

p D 3/2

exp~2gv2!, ~1!

where

g5
m

2kBT*
.

Consider a small volumed3r surrounding the pointr and
the small volumed3v in the velocity space containing th
point v. The productf m(v,T* )d3rd3v is the average numbe
of particles ind3r with velocities fromd3v „i.e., this product
is a dimensionless quantity@ f m(v,T* )d3rd3v#51….

Let us recall that the thermal energy of the beamEth(T* )

is equal toNb( 3
2 kBT* ). Similarly, the total momentum of the

beam Pth also depends on T* , namely, Pth(T* )
52m(2kBT* /mp)1/2Nb .

Assume that thez axis of the Cartesian coordinate syste
is perpendicular to the surface of the film and is direc
towards the detector. The remaining axes are lying in
plane of the source and are arbitrarily oriented. The dete
of the pulses~a superconducting bolometer sensitive to t
energy carried by the particles of the pulses! and the source
were mounted opposite each other at a distanceL. Only
particles with a positivez component of the group velocity
vz may reach the detector.

In the case of experiments on the propagation of h
pulses, the distribution function obeys the kinetic Boltzma
equation with the collision integral termC@ f # ~which ac-
2853 © 1998 The American Physical Society
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2854 PRE 58T. PASZKIEWICZ AND M. PRUCHNIK
counts for all scattering processes suffered by the particle
a beam! and the sourceż(v;r ,t) term,

] f ~v;r ,t !

]t
1v“f ~v;r ,t !5C@ f ~v;r ,t !#1 ż~v;r ,t !. ~2!

In the ballistic regime one can discard the collision te
C@ f #. Of course, this term plays an important role in t
description of processes of thermalization because collis
with thermal vapor particles provide the crossover from
ballistic to the hydrodynamic~i.e., collision dominated! re-
gime of propagation of molecular heat pulses observed
Andres and co-workers@1,2#. Such a crossover from the ba
listic to the collision dominated regime of motion can
studied for the Lorentz gas models@7,8# and for phonon hea
pulses propagating in elastic isotropic media containing p
mass defects@9#.

Consider the source term in the form

żG~v;r ,t !5d~r !d~ t !. ~3!

The solution of the collisionless Boltzmann equation~CBE!
with such a source term, called the Green’s function, rea

f G~v;r ,t !5u~ t !d~vt2r !. ~4!

Here u(x) is the Heaviside step function andd(x)
5du(x)/dx is the Dirac delta distribution. Sincex, y, andz
are components of the radius vectorr , the vectoriald func-
tion is the product of threed functions of the scalar argumen
d(r )5d(x)d(y)d(z). Recall that@d(r )#5 l 23, wherel is the
length.

The solution of the CBE for an arbitrary source ter
ż(v;r ,t) can be obtained with the help of the Green’s fun
tion @3#, namely,

f ż~v;r ,t !5E d3r 8E
2`

1`

dt8ż~v;r 8,t8! f G~v;r2r 8,t2t8!.

~5!

On this solution we impose the natural condition@10#

FIG. 1. Scheme of the helium chamber used in pulsed molec
beam experiments.
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E
V*

d3r E
2`

1`

dtE d3v ż~v;r ,t !«~v !5Eth~T* !. ~6!

III. THE DISTRIBUTION FUNCTION FOR SELECTED
KINDS OF SOURCE TERMS

In the experiments discussed@1,2# the linear distanceL
between the source and detector planes was comparab
the linear dimensions of the source and detector. This me
that the geometry of the experiment was intermediate
tween a pointlike and an infinite slab. Therefore, we cons
ered several types of sources.

A. A point source

For the described experimental conditions for a po
source located atr50 generating very short pulses, th
source termżp(v;r ,t) has the form

żp~v;r ,t !5ApV* u~vz! f m~v,T* !d~ t !d~r !, ~7!

whereAp is a constant. One may easily check that for@Ap#
51 the source term has the correct dimension, nam

@ żp(v;r ,t)d3rd3v#5t21.
The constantAp is determined from the condition~6!.

Calculating integrals, we findAp52Nb . Hence the solution
of the Boltzmann equation with the source term~7! reads

f p~v;r ,t !52NbV* u~vz! f m~v,T* !u~ t !d~vt2r !. ~8!

B. A homogeneous finite source

Assume that atoms are evaporated by a homogene
source in the form of a circle of radiusrs located on the
planez50 with the center atr50, wherez andr are two of
three cylindric coordinates. The third coordinate is the an
fr . As previously, if we assume that the duration of the
pulses is very short, then

żc~v;r ,t !5Acu~rs2r!d~ t !d~z!u~vz! f m~«,T* !. ~9!

Calculating integrals in Eq.~5!, we obtain the solution obey
ing the condition~6!,

f c~v;r,z,t !5
2NbV*

prs
2

u~vz! f m~«,T* !u~ t !

3d~z2vzt !u~rs1vrt2r!, ~10!

wherevr , vz , andfv define the velocity vector in the cy
lindric coordinate system.

C. Slab geometry

For an infinite slab the source term depends only on thz
variable and timet,

ż`~v;r ,t !5A`u~vz! f m~«,T* !d~ t !d~z!; ~11!

hence the corresponding distribution function reads

f `~v;z,t !5A`u~vz! f m~«,T* !u~ t !d~vzt2z!.

ar
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D. Density of energy current

The quantity measured in experiments on molecular h
pulses is the power density~density of energy per unit time!
falling onto the surface with the normaln̂ at the pointr ,

en̂
~ ż !~r ,t ![n̂jE

~ ż !~r ,t !5E d3v~ n̂v…«~v ! f ż~v;r ,t !. ~12!

In the agreement with Andreset al. @1#, in our calculations

we setn̂5 ẑ. Later we shall omit the indexẑ in eẑ
( ż).

For the fixedr the maximum of a pulse arrives at tim
tmax. We denote the maximal value of the energy density

emax
(ż) (r ) @emax

(ż) (r )5eż(r ,t5tmax)#. Andreset al. @1# measured
the ratio

I ~ ż !~r ,t ![
eż~r ,t !

emax
~ ż ! ~r !

. ~13!

Therefore, with the exception of the discussion of a solut
for a point source, we shall confine ourselves only to t
quantity normalized to unity, which we shall call the sign
of the bolometer.

E. Current densities for a point source

We introduce the lengthr 5ur u and the unit direction vec
tor r̂ as well as two polar anglesu r ,f r . By introducing also
the polar coordinates inv spacev5uvu,uv ,fv and by using
the familiar identity

d~vt2r !5@~vt !2usin uvu#21d~uv2u r !d~fv2f r !d~vt2r !,
~14!

we get

ep~r ,t !5
Nbm

p3/2
u~ t !g3/2

r 3

t6
expS 2g

r 2

t2 D ~ ẑr̂ !. ~15!

The physical dimension ofep(r ,t) is m/t3
„@e( ż)(r ,t)d3v#

5@«/ l 2t#5m/t3
….

Similarly, we calculate anh component of the momentum

density current tensorP̃ (r ,t) per unit time falling onto the
surface with the normalẑ at the pointr ,

ph
~p!~r ,t !5 (

a,b51

3

ĥaP̃ab~r ,t !ẑb5E d3v~ĥ v!~ ẑv! f ~v;r ,t !

5
2Nbm

p3/2
u~ t !g3/2

r 2

t5
expS 2g

r 2

t2 D ~ĥ r̂ …„ẑr̂ …. ~16!

The momentum density is proportional to the sound press
p ~cf. @11,12#!. Hence, for molecular pulses generated by
point source and propagating in this regime we obtain

p;
z2

t5
expS 2g

r 2

t2 D .
at

y

n
s
l

re
a

Note that for waves propagating in the same regime al
the z axis Cooket al. have calculated the excess of stre
dT̃zz(r ,t) at a transducer@13# ~cf. also@14,15#!

dT̃zz~r ,t !;
z2

t3
expS 2g

r 2

t2 D . ~17!

Mayer and Sessler@15# considered the momentum densi
for collisionless propagation of sound in gases.

Consider the energy density and the density of
h-component of momentum falling onto the surface with t
normalẑ at the pointr of the detector plane. Calculating th
integral over time we get

e~r !5E
0

`

dt ep~r ,t !5
Eth~T* !

pr 2
~ ẑr̂ !, ~18!

ph
~p!~r !5E

0

`

dt ph
~p!~r ,t !5

Pth~T* !

pr 2
~ĥ r̂ …~ ẑr̂ !. ~19!

Thus we conclude that these quantities obey the Ga
Lambert law valid for isotropic spaces@5#. Further on we
confine ourselves to the case of energy pulses.

F. Energy current density for a homogeneous finite source

For a homogeneous finite source the bolometer signa
the point with cylindrical coordinates (r,fr ,z) depends on
the exponential function

I c~z,r,t !5u~ t !g21/2
z

t2S 11g
z21u2

t2 D expS 2g
z21u2

t2 D ,

where

u5H 0 for 0<r<rs

r2rs for r.rs .

G. Energy current density for an infinite slab

For an infinite slab we obtain

I `~z,t !5g21/2
z

t2S 11g
z2

t2 D expS 2g
z2

t2 D . ~20!

IV. COMPARISON WITH EXPERIMENTAL FINDINGS

Using the experimental data of Andreset al. @1# ~their
Figs. 2–5! and the equation of the state of the ideal gas,
estimated the mean free pathl of beams of helium particles
We used the standard formula for it

l 5~A2pnd!21,

wheren is the density of helium vapor andd is the diameter
of particles (d.2.2 Å!. In this way we getl , , the lower
bound of l . For 4He l , 515.4 mm, whereas for3He l ,

58.19 mm. Since the distance between the source and
tector is equal to 2.34 mm we conclude that the scattering
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the beam particle by vapor particles cannot influence
form of pulses. So one may study the role of the form
sources only.

A. Molecular 4He beams

Each pulse is characterized by two times, namely, by
arrival time tarr

I ~ t,z5L !5H 0 for t,tarr

I ~ t ! for t.tarr,

and the time of arrival of the maximum of a pulsetmax. The
remaining characteristic is the pulse temperatureT* , which
we treat as a parameter that should be fitted.

The form of pulses depends not only on the type of sou
but also on the particular detector. We considered a point
detector, a finite detector having the form of a circle, an
detector covering the whole plane.

Generally, for all types of sources and detectors there
ists a time interval (0,tarr) for which the amplitude of signals
is negligibly small. Additionally, all values of the arriva
time obtained here are rather close to those observed in
periments@1#. However, the characteristic timestarr and tmax
and shapes of signal, as well as the fitted temperatures
closest to the experimental findings@1# for ~i! the point
source and point detector~which we denotep/p), ~ii ! the
point source and a circular detector with area of 3.733.7
mm2 (c/p),and~iii ! the point source and a detector coveri
whole planez5L (`/p). The results obtained are present
in Figs. 2–5 and Table I.

The results obtained suggest that the sources used in
periments@1# behave as sets of point-like sources. Howev
inspecting Figs. 2–5 one sees that for4He fits are much
better than for 3He, which we may attribute to an eno
mously large heat conductivity of superfluid4He films in
comparison to3He films. Therefore, one can expect that t

FIG. 2. Calculated bolometer signal vs time for3He. The tem-
perature estimated by Andreset al. @1# is 0.6 K. Dots represen
experimental results. Typical error bars are shown.
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latter films are less homogeneously heated than the form
We check this observation in Sec. IV B.

Figures 2–5 are labeled with the kind of helium atom
On each of them there are three curves corresponding to
three above-mentioned configurations for which we obtain
the best agreement with the experimental results. One sh
notice that the curves on Figs. 2–5 corresponds to differ
fitted temperaturesT* .

B. Molecular 3He beams

For simplicity we model inhomogeneously heated heliu
films in only two ways. The first is a homogeneously hea
circle with the center atr5z50 and a superimposed poin

FIG. 3. Calculated bolometer signal vs time for3He. The tem-
perature estimated by Andreset al. @1# is 2.2 K. Dots represen
experimental results. Typical error bars are shown.

FIG. 4. Calculated bolometer signal vs time for4He. The tem-
perature estimated by Andreset al. @1# is 1.1 K. Dots represen
experimental results. Typical error bars are shown.
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source~a ‘‘boiling spot’’! located in the center of this circle
They both radiate Maxwellian beams of temperatureTc* and
Tp* , respectively. The second kind of inhomogeneous sou
consists of two point sources generating two Maxwell
beams of temperaturesT1* ,T2* .

We found that for a colder3He film the fit is excellent for
the first kind of source withTc* 50.25 K andTp* 50.6 K ~Fig.
6, circles!. The second kind of source~two boiling spots! is
better suited for a more heated3He film. The fit is best for
T1* 51.58 K andT2* 53.16 K ~Fig. 6, triangles!. In both cases
we assume that the detector has the form of a circle.

V. CONCLUSIONS

Using the technique of source terms added to the Bo
mann equation we have studied the shapes of molec
pulses in the collisionless regime of propagation. We h
shown that, in agreement with Andreset al. @1#, the assump-
tion that the pulses are Maxwellian is reasonable and its f
provides information about the state of films that evapor
beams of particles. Since we only had at our disposal exp
mental results in the form of plots, we considered the s
plest models of sources. More complicated models w

FIG. 5. Calculated bolometer signal vs time for4He. The tem-
perature estimated by Andreset al. @1# is 2.9 K. Dots represen
experimental results. Typical error bars are shown.

TABLE I. Fitted temperatures of pulses found in Andre
Dynes, and Naranayamurti’s experiments and calculated here
different types of source-detector configurations.

Pulse temperatureT* ~K!

Configuration 3He 4He

Andreset al. 0.60 2.20 1.10 2.90
p/p 0.40 2.05 0.75 2.40
c/p 0.55 2.70 1.00 3.15
`/p 0.70 3.40 1.30 4.05
circle/circle 0.90 4.50 1.70 5.30
slab geometry 0.75 3.75 1.40 4.45
e

-
lar
e

m
e
ri-
-
h

many fit parameters~e.g., coordinates of numerous source!
are beyond the accuracy of the experimental data used.
approach is semiphenomenological and certainly the c
struction of models used should be based on a deeper un
standing of the underlying physical processes. Howev
even such a simple approach seems to be quite succes
therefore, we expect that our results may shed some ligh
the problem of the heat exchange between cooled specim
and a helium bath.
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APPENDIX: PHONON PULSES IN ISOTROPIC ELASTIC
MEDIA

For comparison, consider acoustic phonon pulses pro
gating in isotropic media@9#. For such media the phono
energy« is a linear function of the lengthp of quasimomen-
tum p, i.e., it obeys the linear dispersion relation

« j~p!5cj p ~ j 50,1,2!,

wherep5\k, k5uku being the length of the wave vectork
of an acoustic phonon of polarizationj ( j 50 for longitudi-
nal, j 51 for fast transverse, andj 52 for slow transverse
phonons!, and cj is the corresponding phase velocity. Th
group velocity of acoustic phonon wave packets moving
isotropic media is

for

FIG. 6. Calculated bolometer signal vs time for a combin
source of 3He beams that consists of~i! a heated circle and a
superimposed point source~the heating pulse peak power is 0.01
ergs! ~open circles! and~ii ! two point sources generating two beam
of different temperatures~the heating pulse peak power is 1.8 erg!
~triangles!.
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vg5cj k̂,

wherek̂5k/k is the direction of the phonon wave vector.
Consider a pointlike Planckian source producing sh

pulses of acoustic phonons of temperatureT* ,

ż~k, j ;r ,t !5AV* f plS «

kBT*
D u~ k̂z!d~r !d~ t !,

wheref pl(«/kBT* )5@exp(«/kBT* )21#21 is the Planck distri-
bution function andV* is the volume of the source, a heate
region of a crystal or metallic film. The distribution functio
reads

f ~k, j ;r ,t !5AV* f plS «

kBT*
D u~ k̂z!d~r2cj k̂t !u~ t !.

A condition similar to Eq.~6! allows one to relate the con
stantA to the suitable part of thermal energy of the sou
injected into the specimenEth

(s)(T* ) @10#. The power density

e(r ,t) falling onto the bolometer surface with the normaln̂
5 ẑ can be easily calculated
. A

. B
rt

e

e~r ,t ![ j z
E~r ,t !5

Eth
~s!~T* !

2pr 2

1

3 (
j 50

2 S cD

cj
D 3

dS t2
r

cj
D ,

wherecD is the Debye velocity of considered isotropic m
dium

cD
235 1

3(
j 50

2

cj
23 .

We see that other than in the case of molecular pulses, p
non pulses have the form of very narrow maxima travel
with the corresponding group velocities.

In the case ofperfect anisotropicmedia @4# the compli-
cated nonspherical shapes of phonon surfaces of con
energy result in an increase of the number of observed pu
because one ought to account for contributions of all po
of this surface at which the normal, i.e., the group veloc
vector, is parallel to the vectorr joining a point source with
a point detector. In addition, such surfaces make pulse
plitudes dependent on the direction of propagation~phonon
focusing! and broaden them. However, unlike molecu
pulses, such broadened maxima still move with the co
sponding group velocities.
. B

,
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